Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1179350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404809

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event in patients treated with antiresorptives. Management of MRONJ is challenging, and no non-antibiotic, established medical treatment exists. Intermittent parathyroid hormone (iPTH) has been used off-label to treat MRONJ with favorable results. However, its medical efficacy has rarely been substantiated in clinical or preclinical experiments. Using a validated rice rat, infection-based model of MRONJ, we evaluated the effects of iPTH on established MRONJ. We hypothesize that iPTH contributes to MRONJ resolution by enhancing alveolar bone turnover and healing oral soft tissues. Eighty-four rice rats began a standard rodent chow diet at age 4 weeks to induce localized periodontitis. Rats were simultaneously randomized to receive saline (vehicle, VEH) or zoledronic acid (ZOL, 80 µg/kg IV) every 4 weeks. Oral exams were conducted bi-weekly to assign a gross quadrant grade (GQG, 0-4) to evaluate any lesion at the lingual aspect of the interdental space between maxillary molar (M2) and M3. 14 of 20 VEH-treated rice rats (70%) developed maxillary localized periodontitis with GQG 2-3 after 30 ± 10 weeks of saline. Additionally, 40 of 64 ZOL-treated rice rats with periodontitis developed MRONJ-like lesions after 30 ± 10 weeks of ZOL treatment. Rice rats with localized periodontitis or MRONJ-like lesions were treated with saline or iPTH (40 µg/kg) subcutaneously (SC) 3 times/week For 6 weeks until euthanasia. We found that iPTH -treated ZOL rats had a lower prevalence of MRONJ (p < 0.001), with lower severity extent of oral lesions (p = 0.003) and percentage of empty osteocyte lacunae (p < 0.001). ZOL rats treated with iPTH displayed a higher osteoblast surface (p < 0.001), more osteoblasts (p < 0.001), higher osteoclast surface (p < 0.001) and more osteoclasts (p = 0.002) at alveolar bone surfaces than ZOL/VEH rats. Greater gingival epithelial thickness and epithelial cell proliferation rate was found in the oral mucosa and gingiva of ZOL/PTH rats than in ZOL/VEH rats (p < 0.001). Our data suggest that iPTH is an efficacious non-operative medicinal therapy that accelerates oral healing and enhances the resolution of MRONJ lesions in ZOL-treated rice rats.

2.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728986

RESUMO

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Assuntos
Osso e Ossos , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Microtomografia por Raio-X , Traumatismos da Medula Espinal/terapia , Perfusão
3.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413391

RESUMO

Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.


Assuntos
Minociclina , Osteogênese , Animais , Camundongos , Antibacterianos/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Minociclina/farmacologia
4.
Lab Invest ; 102(4): 363-375, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34934182

RESUMO

The alveolar bone is a unique osseous tissue due to the presence of the teeth and the proximity of commensal oral microbes. Commensal microbe effects on alveolar bone homeostasis have been attributed to the oral microbiota, yet the impact of commensal gut microbes is unknown. Study purpose was to elucidate whether commensal gut microbes regulate osteoimmune mechanisms and skeletal homeostasis in alveolar bone. Male C57BL/6T germfree (GF) littermate mice were maintained as GF or monoassociated with segmented filamentous bacteria (SFB), a commensal gut bacterium. SFB has been shown to elicit broad immune response effects, including the induction of TH17/IL17A immunity, which impacts the development and homeostasis of host tissues. SFB colonized the gut, but not oral cavity, and increased IL17A levels in the ileum and serum. SFB had catabolic effects on alveolar bone and non-oral skeletal sites, which was attributed to enhanced osteoclastogenesis. The alveolar bone marrow of SFB vs. GF mice had increased dendritic cells, activated helper T-cells, TH1 cells, TH17 cells, and upregulated Tnf. Primary osteoblast cultures from SFB and GF mice were stimulated with vehicle-control, IL17A, or TNF to elucidate osteoblast-derived signaling factors contributing to the pro-osteoclastic phenotype in SFB mice. Treatment of RAW264.7 osteoclastic cells with supernatants from vehicle-stimulated SFB vs. GF osteoblasts recapitulated the osteoclast phenotype found in vivo. Supernatants from TNF-stimulated osteoblasts normalized RAW264.7 osteoclast endpoints across SFB and GF cultures, which was dependent on the induction of CXCL1 and CCL2. This report reveals that commensal gut microbes have the capacity to regulate osteoimmune processes in alveolar bone. Outcomes from this investigation challenge the current paradigm that alveolar bone health and homeostasis is strictly regulated by oral microbes.


Assuntos
Osso e Ossos , Osteoclastos , Animais , Bactérias , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Células Th17
5.
FASEB J ; 35(11): e22015, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699641

RESUMO

Periodontitis-mediated alveolar bone loss is caused by dysbiotic shifts in the commensal oral microbiota that upregulate proinflammatory osteoimmune responses. The study purpose was to determine whether antimicrobial-induced disruption of the commensal microbiota has deleterious effects on alveolar bone. We administered an antibiotic cocktail, minocycline, or vehicle-control to sex-matched C57BL/6T mice from age 6- to 12 weeks. Antibiotic cocktail and minocycline had catabolic effects on alveolar bone in specific-pathogen-free (SPF) mice. We then administered minocycline or vehicle-control to male mice reared under SPF and germ-free conditions, and we subjected minocycline-treated SPF mice to chlorhexidine oral antiseptic rinses. Alveolar bone loss was greater in vehicle-treated SPF versus germ-free mice, demonstrating that the commensal microbiota drives naturally occurring alveolar bone loss. Minocycline- versus vehicle-treated germ-free mice had similar alveolar bone loss outcomes, implying that antimicrobial-driven alveolar bone loss is microbiota dependent. Minocycline induced phylum-level shifts in the oral bacteriome and exacerbated naturally occurring alveolar bone loss in SPF mice. Chlorhexidine further disrupted the oral bacteriome and worsened alveolar bone loss in minocycline-treated SPF mice, validating that antimicrobial-induced oral dysbiosis has deleterious effects on alveolar bone. Minocycline enhanced osteoclast size and interface with alveolar bone in SPF mice. Neutrophils and plasmacytoid dendritic cells were upregulated in cervical lymph nodes of minocycline-treated SPF mice. Paralleling the upregulated proinflammatory innate immune cells, minocycline therapy increased TH 1 and TH 17 cells that have known pro-osteoclastic actions in the alveolar bone. This report reveals that antimicrobial perturbation of the commensal microbiota induces a proinflammatory oral dysbiotic state that exacerbates naturally occurring alveolar bone loss.


Assuntos
Perda do Osso Alveolar/microbiologia , Antibacterianos/efeitos adversos , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Appl Physiol (1985) ; 131(4): 1288-1299, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473574

RESUMO

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.


Assuntos
Osteogênese , Traumatismos da Medula Espinal , Animais , Osso e Ossos , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Microtomografia por Raio-X
7.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586848

RESUMO

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

8.
iScience ; 19: 737-748, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31491720

RESUMO

Prolonged heat and sea salt aerosols pose a challenge for the mammalian airway, placing the protective airway surface liquid (ASL) at risk for desiccation. Thus, mammals inhabiting salt marshes might have acquired adaptations for ASL regulation. We studied the airways of the rice rat, a rodent that inhabits salt marshes. We discovered negligible Na+ transport through the epithelial sodium channel (ENaC). In contrast, carbachol induced a large Cl- secretory current that was blocked by the calcium-activated chloride channel (CaCC) inhibitor CaCCinhi-A01. Decreased mRNA expression of α, ß, and γ ENaC, and increased mRNA expression of the CaCC transmembrane member 16A, distinguished the rice rat airway. Rice rat airway cultures also secreted fluid in response to carbachol and displayed an exaggerated expansion of the ASL volume when challenged with 3.5% NaCl. These data suggest that the rice rat airway might possess unique ion transport adaptations to facilitate survival in the salt marsh environment.

9.
Oral Dis ; 25(4): 1116-1135, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30712276

RESUMO

OBJECTIVES: To determine the extent that zoledronate (ZOL) dose and duration is associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ) prevalence in rice rats with generalized periodontitis (PD), characterize structural and tissue-level features of BRONJ-like lesions in this model, and examine the specific anti-resorptive role of ZOL in BRONJ. MATERIALS AND METHODS: Rice rats (n = 228) consumed high sucrose-casein diet to enhance generalized PD. Groups of rats received 0, 8, 20, 50 or 125 µg/kg IV ZOL/4 weeks encompassing osteoporosis and oncology ZOL doses. Rats from each dose group (n = 9-16) were necropsied after 12, 18, 24 and 30 weeks of treatment. BRONJ-like lesion prevalence and tissue-level features were assessed grossly, histopathologically and by MicroCT. ZOL bone turnover effects were assessed by femoral peripheral quantitative computed tomography, serum bone turnover marker ELISAs and osteoclast immunolabelling. RESULTS: Prevalence of BRONJ-like lesions was significantly associated with (a) ZOL treatment duration, but plateaued at the lowest oncologic dose, and (b) there was a similar dose-related plateau in the systemic anti-resorptive effect of ZOL. ZOL and BRONJ-like lesions also altered the structural and tissue-level features of the jaw. CONCLUSION: The relationship between BRONJ-like lesion prevalence and ZOL dose and duration varies depending on the co- or pre-existing oral risk factor. At clinically relevant doses of ZOL, BRONJ-like lesions are associated with anti-resorptive activity.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/epidemiologia , Conservadores da Densidade Óssea/uso terapêutico , Duração da Terapia , Periodontite/tratamento farmacológico , Ácido Zoledrônico/uso terapêutico , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Relação Dose-Resposta a Droga , Prevalência , Ratos , Sigmodontinae , Ácido Zoledrônico/efeitos adversos
10.
Calcif Tissue Int ; 104(1): 79-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218117

RESUMO

To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Osteogênese/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/metabolismo , Osso Cortical/metabolismo , Masculino , Ratos Sprague-Dawley
11.
J Am Assoc Lab Anim Sci ; 58(1): 40-49, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30572978

RESUMO

Rice rats (Oryzomys palustris) are an unconventional laboratory species that has been used to study photoperiodicity, periodontitis, and osteonecrosis of the jaw. Interventional procedures that require anesthesia, including oral procedures, are sometimes necessary in preclinical settings. The use of anesthetics including isoflurane and ketamine combined with α2-adrenoreceptor agonists, such as dexmedetomidine and xylazine, is well-established for laboratory rodents. However, their effects have been studied only modestly in rice rats. The aims of this study were to 1) determine the safety and consistency of 3 common anesthetic modalities in rice rats; 2) compare the physiologic and clinical responses to these anesthetics, and 3) verify the effectiveness of the most successful modality by testing it during an oral procedure (tooth extraction). Isoflurane, intraperitoneal ketamine-dexmedetomidine, and intraperitoneal ketamine-xylazine were evaluated by using a crossover design, in which each rat received all of the anesthetics. Compared with ketamine-dexmedetomidine and ketamine-xylazine, isoflurane inhalation through a nose cone produced more rapid induction, entry to a surgical plane of anesthesia, and initial recovery. In addition, isoflurane produced optimal anesthesia throughout the procedure for most rats. Unlike ketamine-dexmedetomidine and ketamine-xylazine, isoflurane did not alter rectal temperature, SpO2, or respiratory rate during the surgical tolerance period, whereas ketamine-dexmedetomidine and ketamine-xylazine decreased rectal temperature during the last stage of anesthesia and induced cardiorespiratory depression. Furthermore, 2 rats experienced negative outcomes warranting euthanasia: one after receiving ketamine-dexmedetomidine, and the other after ketamine-xylazine anesthesia. In conclusion, isoflurane was the most reliable and effective anesthetic in rice rats and maintained a surgical depth of anesthesia for as long as 30 min, thus supporting successful tooth extractions.


Assuntos
Anestésicos/farmacologia , Boca/cirurgia , Sigmodontinae , Anestesia Geral , Anestésicos/administração & dosagem , Anestésicos Inalatórios , Animais , Estudos Cross-Over , Dexmedetomidina/administração & dosagem , Dexmedetomidina/farmacologia , Quimioterapia Combinada , Isoflurano/administração & dosagem , Isoflurano/farmacologia , Ketamina/administração & dosagem , Ketamina/farmacologia , Ciência dos Animais de Laboratório , Masculino , Ratos , Xilazina/administração & dosagem , Xilazina/farmacologia
12.
FASEB J ; 32(7): 3730-3741, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29475373

RESUMO

A prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance, and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs. adult skeleton was determined in mice deficient in MFG-E8 (KO). In vivo, trabecular bone was similar in MFG-E8KO and wild-type (WT) mice at 6 and 16 wk, whereas 22 wk adult MFG-E8KO mice displayed significantly reduced trabecular BV/TV. The number of osteoclasts per bone surface was increased in 22-wk MFG-E8 KO vs. WT mice, and recombinant murine MFG-E8 decreased the number and size of osteoclasts in vitro. Adult MFG-E8KO spleen weight:body weight was increased compared with WT, and flow cytometric analysis showed significantly increased myeloid-derived suppressor cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow, suggesting an inflammatory phenotype. PTH-treated MFG-E8KO mice showed a greater anabolic response (+124% BV/TV) than observed in PTH-treated WT mice (+64% BV/TV). These data give insight into the role of MFG-E8 in the adult skeleton and suggest that anabolic PTH may be a valuable therapeutic approach for autoimmune-associated skeletal disease.-Michalski, M. N., Seydel, A. L., Siismets, E. M., Zweifler, L. E., Koh, A. J., Sinder, B. P., Aguirre, J. I., Atabai, K., Roca, H., McCauley, L. K. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide.


Assuntos
Antígenos de Superfície/genética , Conservadores da Densidade Óssea/uso terapêutico , Proteínas do Leite/genética , Osteoporose/tratamento farmacológico , Teriparatida/uso terapêutico , Animais , Conservadores da Densidade Óssea/farmacologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoporose/genética , Teriparatida/farmacologia
13.
J Neurotrauma ; 34(21): 2972-2981, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338402

RESUMO

We have reported that testosterone-enanthate (TE) prevents the musculoskeletal decline occurring acutely after spinal cord injury (SCI), but results in a near doubling of prostate mass. Our purpose was to test the hypothesis that administration of TE plus finasteride (FIN; type II 5α-reductase inhibitor) would prevent the chronic musculoskeletal deficits in our rodent severe contusion SCI model, without inducing prostate enlargement. Forty-three 16-week-old male Sprague-Dawley rats received: 1) SHAM surgery (T9 laminectomy); 2) severe (250 kdyne) contusion SCI; 3) SCI+TE (7.0 mg/week, intramuscular); or 4) SCI+TE+FIN (5 mg/kg/day, subcutaneous). At 8 weeks post-surgery, SCI animals exhibited reduced serum testosterone and levator ani/bulbocavernosus (LABC) muscle mass, effects that were prevented by TE. Cancellous and cortical (periosteal) bone turnover (assessed by histomorphometry) were elevated post-SCI, resulting in reduced distal femur cancellous and cortical bone mass (assessed by microcomputed tomography). TE treatment normalized cancellous and cortical bone turnover and maintained cancellous bone mass at the level of SHAM animals, but produced prostate enlargement. FIN coadministration did not inhibit the TE-induced musculoskeletal effects, but prevented prostate growth. Neither drug regimen prevented SCI-induced cortical bone loss, although no differences in whole bone strength were present among groups. Our findings indicate that TE+FIN prevented the chronic cancellous bone deficits and LABC muscle loss in SCI animals without inducing prostate enlargement, which provides a rationale for the inclusion of TE+FIN in multimodal therapeutic interventions intended to alleviate the musculoskeletal decline post-SCI.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Finasterida/farmacologia , Próstata/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Testosterona/análogos & derivados , Inibidores de 5-alfa Redutase/farmacologia , Androgênios/farmacologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Modelos Animais de Doenças , Masculino , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Testosterona/farmacologia
14.
Comp Med ; 67(1): 43-50, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28222838

RESUMO

Marsh rice rats (Oryzomys palustris) fed a pelleted diet high in sucrose and casein have been used as a model for moderate to severe periodontitis. Here we characterize the prevalence, location, and histopathologic features of food-impaction lesions (FIL), a unique type of oral event, in rice rats fed standard pelleted rodent chow from weaning until 34 wk of age. Healthy female rats (n = 90; age, 4 wk) were weaned into groups (n = 10 to 24) and were euthanized at 4, 16, 22, 28, or 34 wk of age. At necropsy, high-resolution photographs of the 4 jaw quadrants were examined by 3 independent observers to determine the presence, number, and location of FIL. In addition, gross periodontitis was scored (scale, 0 to 4), and the hemimaxillar surface area containing FIL was measured. Serial sections of decalcified jaws were assessed histologically. The prevalence of FIL increased with age, and was 0% (baseline), 59.1%, 69.6%, 81.8% and 80.0% in rats at age 4, 16, 22, 28, and 34 wk, respectively. FIL were predominantly located (93.9%) in the maxillary palatal surfaces of the interproximal area between molars 2 and 3 and did not affect mandibular surfaces. The percentage of the hemimaxillar surface area occupied by FIL was 6.83%, 4.82%, 2.88%, and 6.52% in rats at age 16, 22, 28, and 34 wk, respectively. Histopathologic changes in FIL varied from localized gingivitis to larger, localized periodontitis-like lesions. These data indicate that FIL are common in rice rats fed standard rodent chow, are slight to mild in severity, and are localized to specific regions in the oral cavity, thus suggesting they may be a suitable model for local maxillary periodontitis when fed standard rodent chow.


Assuntos
Processo Alveolar/patologia , Doenças Maxilomandibulares/patologia , Periodontite/patologia , Doenças dos Roedores/patologia , Ração Animal/efeitos adversos , Animais , Modelos Animais de Doenças , Feminino , Doenças Maxilomandibulares/etiologia , Periodontite/etiologia , Distribuição Aleatória , Doenças dos Roedores/etiologia , Sigmodontinae
15.
JBMR Plus ; 1(2): 66-72, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30283882

RESUMO

Previous work has shown that the soluble murine BMPR1A-fusion protein (mBMPR1A-mFc) binds to BMP2 and BMP4 with high affinity, preventing downstream signaling. Further, treatment of intact and ovariectomized mice with mBMPR1A-mFc leads to increased bone mass, and improved bone microarchitecture and strength, via increased bone formation and reduced resorption. In this study, we tested the effects of mBMPR1A-mFc on disuse-induced bone loss caused by 21 days of hindlimb unloading (HLU) via tail suspension versus cage controls (CONs). Adult female C57BL/6J mice (12 weeks old) were assigned to one of four groups (n = 10 each): CON-VEH; CON-mBMPR1A-mFc; HLU-VEH; and HLU-mBMPR1A-mFc. Mice were injected subcutaneously with VEH or mBMPR1A-mFc (4.5 mg/kg, 2×/week). Leg BMD declined in the HLU-VEH group (-5.3% ± 1.3%), whereas it was unchanged in HLU-mBMPR1A-mFc (-0.3% ± 0.9%, p < 0.05 versus HLU-VEH). Leg BMD increased significantly more in CON-mBMPR1A-mFc than CON-VEH (10.2% ± 0.6% versus 4.4% ± 0.8%). In the femur, trabecular, and cortical bone microarchitecture was worse in the HLU-VEH compared to CON-VEH mice, whereas mBMPR1A-mFc treatment for 3 weeks led to greater Tb.BV/TV, Tb.Th, and midshaft Ct.Th in both the HLU and CON groups compared to comparable VEH-treated counterparts (p < 0.05). HLU-mBMPR1A-mFc mice also had 21% greater failure load (p < 0.05) compared to their VEH-treated counterparts. Dynamic histomorphometry indicated that treatment with mBMPR1A-mFc led to significantly greater mineralizing surface and mineral apposition rate, resulting in a 3.5-fold and fivefold higher bone formation rate in the mBMPR1A-mFc-treated CON and HLU animals versus VEH groups, respectively. mBMPR1A-mFc-treated mice had a similar osteoblast surface but significantly lower osteoclast surface than VEH-treated animals in both the CON and HLU groups. Altogether, these findings suggest that treatment with the soluble BMPR1A fusion protein may be useful for maintenance of skeletal integrity in the setting of disuse-induced bone loss.

16.
Bone ; 85: 99-106, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855373

RESUMO

Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development.


Assuntos
Osso e Ossos/patologia , Dieta Hiperlipídica , Comportamento Alimentar , Frutose/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Animais , Biomarcadores/sangue , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/fisiopatologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiopatologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Masculino , Ratos Sprague-Dawley , Microtomografia por Raio-X
17.
Bone ; 84: 148-159, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721737

RESUMO

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) has been shown to stimulate bone formation, decrease bone resorption, and increase bone mass in both animals and humans. To obtain insight into the temporal cellular and transcriptional changes in the osteoblast (OB) lineage associated with long-term Scl-Ab treatment, stereological and transcriptional analyses of the OB lineage were performed on lumbar vertebrae from aged ovariectomized rats. Animals were administered Scl-Ab 3 or 50mg/kg/wk or vehicle (VEH) for up to 26weeks (d183), followed by a treatment-free period (TFP). At 50mg/kg/wk, bone volume (BV/total volume [TV]) increased through d183 and declined during the TFP. Bone formation rate (BFR/bone surface [BS]) and total OB number increased through d29, then progressively declined, coincident with a decrease in total osteoprogenitor (OP) numbers from d29 through d183. Analysis of differentially expressed genes (DEGs) from microarray analysis of mRNA isolated from laser capture microdissection samples enriched for OB, lining cells, and osteocytes (OCy) revealed modules of genes that correlated with BFR/BS, BV/TV, and osteoblastic surface (Ob.S)/BS. Expression change of canonical Wnt target genes was similar in all three cell types at d8, including upregulation of Twist1 and Wisp1. At d29, the pattern of Wnt target gene expression changed in the OCy, with Twist1 returning to VEH level, sustained upregulation of Wisp1, and upregulation of several other Wnt targets that continued into the TFP. Predicted activation of pathways recognized to integrate with and regulate canonical Wnt signaling were also activated at d29 in the OCy. The most significantly affected pathways represented transcription factor signaling known to inhibit cell cycle progression (notably p53) and mitogenesis (notably c-Myc). These changes occurred at the time of peak BFR/BS and continued as BFR/BS declined during treatment, then trended toward VEH level in the TFP. Concurrent with this transcriptional switch was a reduction in OP numbers, an effect that would ultimately limit bone formation. This study confirms that the initial transcriptional response in response to Scl-Ab is activation of canonical Wnt signaling and the data demonstrate that there is induction of additional regulatory pathways in OCy with long-term treatment. The interactions between Wnt and p53/c-Myc signaling may be key in limiting OP populations, thus contributing to self-regulation of bone formation with continued Scl-Ab administration.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Linhagem da Célula/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Ovariectomia , Transcrição Gênica/efeitos dos fármacos , Animais , Contagem de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo
18.
Comp Med ; 65(5): 416-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26473345

RESUMO

Published reports of spontaneous neoplasia in marsh rice rats (Oryzomys palustris) are sparse. We report here a case of cutaneous epitheliotropic T-cell lymphoma in a 14-mo-old marsh rice rat that involved the ear pinnae, with dissemination to the liver and spleen. Histologically, the thickened ear pinnae showed diffuse infiltration of neoplastic lymphocytes into the epidermis, dermis, and adnexal skin structures, with Pautrier microaggregations present in the epidermis. In addition, neoplastic lymphocytes were observed infiltrating and disrupting the architecture of the liver and spleen. Neoplastic lymphocytes were strongly positive for the T-cell marker CD3 but were negative for the B-cell markers CD19 and CD20. These histologic and immunohistochemical features are consistent with an epitheliotropic T-cell lymphoma, as previously reported in other species, including humans. To our knowledge, this report represents the first published case of spontaneous cutaneous epitheliotropic T-cell lymphoma in a marsh rice rat.


Assuntos
Pavilhão Auricular/patologia , Neoplasias da Orelha/veterinária , Linfoma Cutâneo de Células T/veterinária , Sigmodontinae , Neoplasias Cutâneas/veterinária , Animais , Biomarcadores Tumorais/análise , Biópsia/veterinária , Pavilhão Auricular/química , Neoplasias da Orelha/química , Neoplasias da Orelha/patologia , Imuno-Histoquímica/veterinária , Linfócitos do Interstício Tumoral/química , Linfócitos do Interstício Tumoral/patologia , Linfoma Cutâneo de Células T/química , Linfoma Cutâneo de Células T/patologia , Masculino , Neoplasias Cutâneas/química , Neoplasias Cutâneas/patologia
19.
Bone ; 81: 380-391, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26261096

RESUMO

Sclerostin antibody (Scl-Ab) and parathyroid hormone (PTH) are bone-forming agents that have different modes of action on bone, although a study directly comparing their effects has not been conducted. The present study investigated the comparative quantitative effects of these two bone-forming agents over time on bone at the organ, tissue, and cellular level; specifically, at the level of the osteoblast (Ob) lineage in adolescent male and female rats. Briefly, eight-week old male and female Sprague-Dawley rats were administered either vehicle, Scl-Ab (3 or 50mg/kg/week subcutaneously), or human PTH (1-34) (75 µg/kg/day subcutaneously) for 4 or 26 weeks. The 50mg/kg Scl-Ab and the PTH dose were those used in the respective rat lifetime pharmacology studies. Using robust stereological methods, we compared the effects of these agents specifically at the level of the Ob lineage in vertebrae from female rats. Using RUNX2 or nestin immunostaining, location, and morphology, the total number of osteoprogenitor subpopulations, Ob, and lining cells were estimated using the fractionator or proportionator estimators. Density estimates were also calculated referent to total bone surface, total Ob surface, or total marrow volume. Scl-Ab generally effected greater increases in cancellous and cortical bone mass than PTH, correlating with higher bone formation rates (BFR) at 4 weeks in the spine and mid-femur without corresponding increases in bone resorption indices. The increases in vertebral BFR/BS at 4 weeks attenuated with continued treatment to a greater extent with Scl-Ab than with PTH. At 4 weeks, both Scl-Ab and PTH effected equivalent increases in total Ob number (Ob.N). Ob density on the formative surfaces (Ob.N/Ob.S) remained similar across groups while mineral apposition rate (MAR) was significantly higher with Scl-Ab at week 4, reflecting an increase in individual Ob vigor relative to vehicle and PTH. After 26 weeks, Scl-Ab maintained BFR/BS with fewer Ob and lower Ob.N/Ob.S by increasing the Ob footprint (bone surface area occupied by an Ob) and increasing MAR, compared with PTH. The lower Ob.N and Ob.N/Ob.S with Scl-Ab at 26 weeks were associated with decreased osteoprogenitor numbers compared with both vehicle and PTH, an effect not evident at week 4. Osteoprogenitor numbers were generally positively correlated with Ob.N across groups and timepoints, suggesting dynamic coordination between the progenitor and Ob populations. The time-dependent reductions in subpopulations of the Ob lineage with Scl-Ab may be integral to the greater attenuation or self-regulation of bone formation observed at the vertebra, as PTH required more Ob at the formative site with correlative increased numbers of progenitors compared with Scl-Ab indicating potentially greater stimulus for progenitor pool proliferation or differentiation.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteínas Morfogenéticas Ósseas/imunologia , Osso e Ossos/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/administração & dosagem , Animais , Anticorpos Monoclonais/química , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Feminino , Fêmur/efeitos dos fármacos , Humanos , Masculino , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/química , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Tíbia/efeitos dos fármacos , Fatores de Tempo
20.
Biomacromolecules ; 16(8): 2374-81, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26151628

RESUMO

Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico , Osteoprotegerina/química , Animais , Artrite Reumatoide/patologia , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/patologia , Humanos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteoporose/patologia , Osteoprotegerina/administração & dosagem , Polímeros/administração & dosagem , Polímeros/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...